
Moving swapping infrastructure to Rust

Vitaly Wool, Konsulko
Kangrejos 2025

Swapping (paging)

• using secondary storage to store and retrieve data
– secondary storage is usually an SSD or flash device
– saves memory by pushing rarely used pages out

• trade memory for performance?
– reading and writing pages may be quite slow

• use RAM to cache swapped-out pages
– compress swapped-out pages, or there's no gain

• trade performance for memory?
– in some sense, but we also get more flexibility

 zswap: compressed write-back cache

• compresses swapped-out pages and moves them into a pool
– when the pool is full enough, pushes the compressed pages to the

secondary storage
– pages are read back directly from the storage when needed

• compression is implemented using crypto API
– several compression backends (lz4, lzo, zstd, gzip...)

• allocation is implemented using zpool API
– Was: 3 allocation backends (zbud, zsmalloc, z3fold)
– Now: only zsmalloc remains
– An attempt to remove zpool has been made

ZRAM: ramdisk with compression

• RAM block device driver with on-the fly compression
– Basically a ramdisk on steroids

• Selectable compression backend
– Selectable via the crypto API
– LZO, LZ4, zstd etc.

• Non-selectable allocation backend
– Always zsmalloc via zsmalloc’s own API

• Fully featured block device
– Mostly used as a swap storage in Android
– Zswap is not used in this configuration

zsmalloc

• Mature allocator backend
– Provides very good compression density
– Fast and scalable

• Rather complex implementation
– Objects are divided into 255 size classes
– objects of the same class stored consequently within a page
– Some objects span across 2 pages

• Doesn’t work well in 16+K page setups
– Lower granularity
– Redundant data copies

 zsmalloc

 zsmalloc’s spillover

 zsmalloc’s spillover

• There’s nothing wrong about it
– Still one has to do redundant

copying
– Compaction is required to keep

fragmentation at bay

• There’s no easy way to prevent
spillover
– Class sizes are not 2x multiples
– “tail” bytes will be lost

• But we can organize page blocks
– Minimize unused “tails”

 zblock

• Based on 2 simple ideas
– With the recent advancements in vmalloc/vmap, one doesn’t need to

reinvent the wheel
– Divide large blocks into an array of same size objects
– These same size objects (slots) don’t have to be of 2^x size

• Small code footprint and easy to understand concept
• How it relates to zsmalloc

– 4K pages: comparable compression density, comparable
performance

– 16K pages: better compression density, better performance

 zblock: no spillover

What we could move to Rust

• ZRAM was the first and the best candidate
– It’s just a device driver
– Lots of rarely used / unused code
– Deployed almost exclusively in Android
– Rust block device infrastructure wasn’t quite ready yet

• ZRAM_Rust will have to use zsmalloc C API
– Reimplementing custom API in Rust?

• Moving zsmalloc to Rust is very complicated
– Lots of code to rewrite
– fiddling with low level mechanisms/data

What have we done?

• We noticed suboptimal zsmalloc performance with 16K pages
• The suggested way to go was:

– Implement a new allocation backend in Rust
• Well, in fact, reimplement zblock in Rust

– Implement Rust zpool API
• Patchset submitted but is on hold

– Zblock.rs will communicate with zswap via that API
– Keep C zswap implementation
– Don’t do anything with ZRAM (yet)

• And that’s exactly what’s been done :)

Obstacles

• zpool API removal attempt
– Still in mm-unstable, hopefully won’t get into 6.18

• Motivation: “zpool is redundant, but you can add something aike to enable
build time allocator choice”

• Doesn’t sound like a good option for Rust

• Some MM stuff missing on the Rust side
– Would gladly use vfree_atomic()
– kmemcache

• Incomplete RCU implementation on the Rust side
– Zblock would benefit
– Toy implementation (out of tree)
– Field projections (won’t be ready tomorrow)

Way forward (wishful thinking)

• Try to keep zpool API
• Proceed with the zpool API in Rust
• Cleanup and submit zblock.rs
• Cleanup and submit Rust ramdisk driver
• Extend the ramdisk driver to be a replacement for ZRAM

– Think about Rust only API for zblock to be used by ZRAM_Rust

• Shmem in Rust?
– Would be good for Rust DRM drivers
– Too ambitious

WHAT ELSE?

That’s it, thanks for your attention

	1 - Moving swapping infrastructure to Rust
	2 - Swapping (paging)
	3 - zswap: compressed write-back cache
	4 - ZRAM: ramdisk with compression
	5 - zsmalloc
	6 - zsmalloc
	7 - zsmalloc’s spillover
	8 - zsmalloc’s spillover
	9 - zblock
	10 - zblock: no spillover
	11 - What we could move to Rust
	12 - What have we done?
	13 - Obstacles
	14 - Way forward (wishful thinking)
	15 - What else?

